Optimization of Perturbation Parameters for Simulated Free Shear Layer Flow
نویسندگان
چکیده
This paper provides details on the optimization of phase and amplitude of perturbations for simulated free shear layer flows. The goal of the optimization is to maximize or minimize the rate of growth of the shear layer, based upon firstprinciples physics-based simulations that represent solutions to the fully nonlinear Navier-Stokes equations. These simulations have been obtained using a unique method [1], [2] that considerably reduces the computational burden normally associated with obtaining such solutions. In fact, the development of active flow control methodologies is often based upon reduced order models of the NavierStokes equations to avoid this computational overhead. Various regression methods were used to approximate the shear layer thickness as a function of the phase and amplitude of perturbations used to excite the flow dynamics as a proxy for using a simulation based upon first principles, in order to reduce computational burden even further. It was found that nonlinear regression methods overall outperformed linear regression methods, owing to the fundamentally nonlinear nature of the data.
منابع مشابه
Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کاملAn Enhanced Viscoplastic Constitutive Model for Semi-Solid Materials to Analyze Shear Localization
Semi-solid materials undergo strain localization and shear band formation as a result of granular nature of semi-solid deformation. In the present study, to analyze the shear localization, a unified viscoplastic constitutive model was developed for the homogeneous flow. Then, a linearized analysis of the stability performed by examining the necessary condition for the perturbation growth. For t...
متن کاملModeling and Optimization of non - isothermal two- phase flow in the cathode gas diffusion layer of PEM fuel cell
In this paper, a non-isothermal two-phase flow in the cathode gas diffusion layer (GDL) of PEM fuel cell is modeled. The governing equations including energy, mass and momentum conservation equations are solved by numerical methods. Also, the optimal values of the effective parameters such as the electrodes porosity, gas diffusion layer (GDL) thickness and inlet relative humidity are calculated...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملDiffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate
The main purpose of this work is to investigate the porous medium and diffusion-thermo effects on unsteady combined convection magneto hydrodynamics boundary layer flow of viscous electrically conducting fluid over a vertical permeable surface embedded in a high porous medium, in the presence of first order chemical reaction and thermal radiation. The slip boundary condition is applied at the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014